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"1, Introduction a.nd‘sm!m;cz Iet X;,e00,% ‘be n independent
observations on & p-dimensional random variable X = (xl"" ,x ) with
absolutely continuous distribution function F(xl,.. . ,x Yo The problem
considered here is zthe estimation of the probability dens1ty function

’ PF(x ,eue,x )
(1.1) £(xys000,% ) = 1 P
. P 5xl, . .,Bxp
at a point z = (zl,...,zp) where £ is positive and continucus.

The problem of estimating a probability density function has. only
recently begun to receive attention in the literature. Several authors
{Rosenblatt (1956), whittle (1958), Parzen (1962); and Watson and Leadbetter
(1963)) bave considered estimating a univariate density function f(x). In
addition, Fix and Hodges {1951) were concernmed to a limited degree with
density estimation and Cacoullos (1964) generalized Parzen's work to a
p~variate density f(xi,... ,xp). These authors wereprincipally motivated
by the problem of estimating the hazard, or conditional rate of failure,
function £(x)/41 ~ F(x){, where F(x) is the distribution function

corresponding to f£{x). An exception to this statement was Fix and

Hodges (1951) who were concerned with nonparametric discrimination. The
work in this paper also arose out of work on the nonparametric discri-
mination problem.

A pro'blem which arises in one a.pproach to density estimation is

choosing a neighborhood about the point z where the density is being

lThis work was supported by National Aeronautics and Space
Administration Research Grant NsG - 562.
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estimated. Parzen (1962), e.g., chooses an h(n) which is a function of
n and this h(n) determines the size of a neighborhood about z. This
h(n) is a constant for each n and does not depend on the observations

X ye+esX + In this pa.perra random neighborhood which is a function of n
and of the cobservations XyyeersXy is chosen‘.__j Fix and Hodges (1951) use
a somewhat similar approach in one special case which they comnsider but
all other authors mentioned above use an approach similar to Parzen's.

% An estimate jbased on this randam n=ighborhood is proposed and shown to be
' consistent. | A special case is considered which illustrates how estimates
can be obtained in certain cases other than those explicitly considered

here.
The efficiency of the estimate proposed herein for finite sample
size n is not studied in this paper. However, further work in this area
is planned and will involve scme numerical comparisons with other estimates.

2. Preliminaries and notation. Ilet KyseeesXy be a sample of n
p-dimensional observations on a random variable X = (Xl,. .. ,x ). An
observation x, on X is x, = (xll pereaXy ). Assume X has an a’bsolutely
continucus distribution function F(xl,'...,x }. The corresponding density
function f(xl,...,x }, as given in (1.1), exists almost everywhere. An
estimate is desired for the density f at a point 2z = (zl,...,z ) where f
is positive and continuous.

Let 4(X,Z) represent the p-dimensional Euclidean distance function
|x-2|. A p-dimensional sphere about z of radius r will be designated by

Sr,z" i.e. S.r,z:: x|a(x,z) < rfe VThe volumg or measure of the sphere .

S. _ will be called A, and A: _ is equal to ZI'PxP/ 2/or(p/2). Briefly
T,z T,z T2

lX-Zl,

it

(2.1) ax,z)

(2.2) g {xld(x',z) Y r} and

43]
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(2.3) A, , = Measure of 5 = 2P/ 2 /pr(p/2)

T,z

Using this notation and noting that Ar z " 0 if and only if
b4 .

r -+ 0, we have

(2.4) f(zl,...,zp) . Um. Xe sr,z} /A

Pt O r,z’

j.e. there exists an R such that if r < R then

(2.5) |P$xX € S /A

vz " £ (zl,...,zp)|< €
for arbitrary € > 0.

In the preceding paragraph the Euclidean distance function is
used. There and in the work which follows any other metric could just
as well have been used. The Euclidean distance function is being used

simply because it seems the natural one to use here.

consistent density estimator. According to (2.5),
P{X € Sr, F r, can be ma.de as neQ} f(zl,...,z ) as one chooses by
letting r approach zero. X €S z is unknown since it depends on the
density f being estimated. Therefore if a good estimate of PG(:G Sr,}
can be found it can be substituted in the expression P {X € Sr,z} /Ar,z

and this should provide a good estimate of the density f at z. This is
the approach which will be used here.

Let ‘k(n)?
(this can be generalized to more general k(n) with minor difficulty)
such that

be a non-decreasing sequence of positive integers

lim. k(n) =
(3‘1) o n = o
and lim. k(n)fn = o.

N =~y ®°
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These are very important conditions in the work of this paper. They will
dmmicitly control the size of the neighborhoods being chosen about the
point z in such a way that the proposed estimate of f(z) will be
consistent. If [} is the greatest integer function then k(n) = Ebnbt_]
where b is a constant and 0 < & < 1 will satisfy the conditions in (3.1).
In view of the way in which k(n) will be used in this paper we will also
require that k(n) < n for all n. This will restrict the choice of b
somewhat.  Further work is planned which should help in the problem of
choosing of k(n) in practice.

The discussion in this paragraph is based on the theory of
coverages (cf. Wald (1943), Tukey (1947T), or Wilks (1962)). ILet
Xypeees X be ‘a. sample of size n from a p-dimensional distribution of the
type discussed earlier, i.e. x, = (xli""’xpi) for i = 1,...,n. An
ordering function @ (x) = [x-z| is introduced where |x-z| is as defined in
(2.1). Then w = ¢ (x) is a random variable which has a continuous
distribution function, say H(W). Consider the new random variables

Wis Vpsees,W Where w, = @ (xi) for i = 1,...,n. ILet the ordered

Yy

H(W(l)), o o‘-.,C

's be V(1)7* ¥ (n) " The coverages are ¢, = H(w(l)), c, = H(w(a)) -

el = 1" H(w(n)). The corresponding p-dimensional sample

blocks Bp(l), ceey Bp(n*l) are the disjoint parts that the p-dimensional

space is divided into by the ordering curves @ (x) = w(i) for i =

i

1,...,n. P{Bp(l)} =c, for i = 1,...,n. The distance from z to the x
closest to it is w(l). Therefore Bp‘(l) consists of those points inside a

p-dimensional sphere about z of radius w( 1)* This sphere is the ordering
curve 9 (x) = w(l). Bp(k) consists of those points which are inside a

p-dimensional sphere of radius w( ) about z but which are not in

k

- +1
Bp(l);---:Bp(k 1) for k = 1,...,n. Bp(n ) consists of those points



outside a p-dimensional sphere of radius w<n) about z. Por convenience

we now set w

(1)
%

(x) =T for k=1,...,n. The sum of the first k blocks,

+ ...+B (k ), consists of those points inside a sphere of radius

r_ about z, viz. § . The sum of the corresponding coverages C,+...+C
k Ty 2 1l k

is equal to P{% €S
Ty

references given earlier in this paragraph Uk has a Beta distribution with

%}'which we set equal to Uk. By the theory in the

(k, n-k+l) degrees of freedom.

It is convenient to think of the k in the preceding paragraph as
the k of (3.1) as this is the way we will use it in the sequel. It should
be recalled that

EU, = k/(n+1)
(3.2) var (4,) = k(n-k+1)/(n+1)? (n42)

We now define an estimate for the density f at the point z = (Zl""’zp)’

where f is positive and continuous. Put

?n(z) = b/(a+)] [/, ]
(3.3) o

= k/(n+1)] [pr(p/2)/2r£ﬂp/ 2,

where rk is as defined above. In other words, once k(n) is chosen and
a sample xl,...,xn is available one determines rk'as the distance to the

KB closest x; to z and then proceeds to compute (z) as given in (3.3).
It should be noted that this estimate is particularly easy to obtain in

practice.

A 3 K] > '}
THEOREM 3.l1. The density estimator fn(z) as given in (3.3) is consistent.



Proof. The first step in this proof is to show that f(zl,...,zp) can

be approximated by P{X € S }/A . This is done by showing that
Tys2) ry 2

P _
P{X € srk’z}/Ark,z b f(Zl, ....,ZP).

P{X € Sr z} is equal to Uk. Therefore using (3.2) and the
k)

Tchebysheff inequality we have for arbitrary € > 0

2
Gy B eIz < e

= k(n—k+l)/(n+1)2 (n+2)e2.

Using the conditions (3.1),the right hand side of (3.4k) is seen to
converge to zero. Thus for large n the right hand side of (3.4) can be
made arbitrarily small. That is U -k/(n+l) --2—— 0. Using (3.1)
again gives k/(n+l) ===+ 0. Combining these two results gives

P
(3.5) U = P{X € Srk,z} —tme 0.

However, this can happen only if the measure of S y ViZ. A
T, ,Z T
k k
converges in probability to zero, by the continuity assumptions. This in
turn can occur if and only if rk--g-——-» 0. ‘

Let R be as defined in (2.5). Since Ty SN 0, there exists an

N such that if »»N, and for arbitrary n >0

(3.6) P{rk< R} >1 - 1.

Using (2.5) and (3.6) the following statement can be made.

b4
2




Ifn>N

(3.7) P{|P{X € Srk’ z}/Ark,z-f(zl’ .o .,zp) |<e } > 1-1q,

where ¢ is as defined previously in (2.5). Thus

P
(3.8) P{X € Srk,z}/Ark,z —— (zl,...,zp).

This concludes the first part of the proof.

The concluding portion of the proof goes as follows.

By (3.8) UIJArk,Z—?—-» T (zl,...,zp) or rewriting this

(3.9) [(n+1)/k]Uk/[(n+1)/k]Ark,Z_..E_.., f(zl,.-..,zp).

If it can be shown that the numerator of (3.9), viz. [(m])'/k]Uk,

converges in probability to 1, then it will follow that the denominator,
viz. [_(n+1)/k].l\r ,» Will converge in probability to 1/ f(zl,...,z'p').
k’

This last statement is equivalent to

(3.10) [/ (n+1)] [1/Ark’21 S £(zyse0es2)-

This is the desired conclusion of the theorem. It remains then to show

that [(a+l)/AJU —S=s 1.
Consider [(n+1)/k] U -
E[((n+l)/k)U1;| =1

(3.11)
and  var [((n+1)/X)U] = [1/k] [(n~k+1)/ (n+2)] -




The variance in (3.11) approaches zero by (3.l). Using the Tchebysheff
inequality and for arbitrary € > 0

Ga2) Bl [n)/dy, - 1 ehgver [()/0g]/e2
= [1/x] [(n-k+l)/(n+2)e2].

Since for large n the right hand side of (3.12) can be made arbitrarily small

we have

(3.13) [(o1)/¥]y, —£— 1.

Thus (3.10) follows from the argument above and the theorem is proved.

It was mentioned earlier that the neighborhoods determined about the
point z would be random. It can now be noted that the neighborhoods
about z are essentially determined by Ty which is indeed a random variable.
It depends on the observations XpseeerXy which seems to be a desirable
feature.

k., A modification of @;(z) for a special case. In this section
we consider modifying fh(z) in order to use it at a point which does not
satisfy the continuity assumptions of the previous work. A special
problem will be considered but & similar technique can be applied to
many other cases. Fix and Hodges (1951) have encountered the particular
problem considered here in their work on nonparametric discrimination.

ILet X be a univariate random variable with £(x) =0 for x < a,
and f is positive and continuous on [a,=). An estimate for f(a) is

desired. By definition f(a) is

(4.1) £(a) = lllim- (F(Mh})l - F(a)) _ ii‘“‘ ,_F’(?h) .




This statement corresponds to (2.4) in the general case. In this case

h is the length of the interval [a., a+h). There is no central interval
about a where f is continuous as f is continuous on the right only at the
point a. The theory of coverages used in the development of ?n(z) in the
previous section required central intervals or neighborhoods about the
point z. Thus some slight modifications are required.

The observations x(l) ,...,x(n) are ordered as to distance from

z = a since X is univariate and since f(x) = O for x < a which implies
that all x(i) >a. Therefore the ordering function d(x,z) is not
necessary here. Consider the blocks Bl(l) = [g.,x(l)], Bl(a) =

n+l)

(x(l),x(a)],..., Bl(

Corresponding to these blocks are coverages ¢, = F(x(l)),

= (X(n):w) .

¢, = F(x(z)) - F(x(l))"“’cn+1 =1- F(x(n)). Now

Uk cl+. eet ck

()4.2) = F(X(k))

and
B (1) 44 Bl(k) = [a,x(k)].

The measure of this last sum of blocks is x ( - a. The variable Uk

k)

has the same distribution as it had previously. Therefore the procedure
e

now in getting an estimate fn(a) for f(a) is the same as that in de-

veloping 'f\n(z) in the general case. This leads us to define

f‘;(a) = [k/(as1)] [1/(x(k) -a) ],

which is a consistent estimate for f(a).
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